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In this paper we report the result of some experiments on BY
the recognition of targets by an echolocating dolphin and by a Distribution/_
counterpropagation neural network. The first experiment Avaiatiity Codes
describes the success of a counterpropagation network with 20 Avail 1n0/or_
input bands in classifying four different targets on the basis of D Spec
the spectral distribution returned in the echo from the objects.
Echoes for this experiment were collected in a quiet test pool
using a simulated dolphin click as the source. These patterns
were classified with 100% accuracy. These data compared well
with those obtained from a real dolphin recognizing (94.5%
correct) these same targets in a noisy natural environment. The
same network architecture was then used to classify echoes
from three of these targets, collected while the dolphin
echolocated in the noisy environment while performing the item
recognition task. Under these conditions, the network was
96.7% correct. These results suggest that neural networks of
various sorts may be promising computational devices for
automated sonar target recognition and for the modelling of
cognitive and perceptual processes in dolphins.

One of the appeals of parallel distributed processing is
the ready analogy between artificial neural networks and
presumed organizations of neural function. The architecture
of artificial neural networks seems more similar to brain
organization than does the standard von Neumann-type
computer, and hence, these networks seem more plausible
representations of cognitive organization than do models based
on more traditional computer metaphors 110, 16]. The
plausibility of artificial neural networks also recommends them
as potential means of solving automation problems that have
proved recalcitrant for the more traditional approaches,
particularly in the realm of pattern recognition and related
phenomena. Although artificial intelligence programs have
difficulty with such problems as pattern recognition, brains
solve these problems apparently effortlessly. The putative
similarity of artificial neurql networks to natura! neural
systems suggest that they may be peculiarly suitable for solving
pattern recognition problems. Progress can also be facilitated
by exploiting the analogy between artificial and natural neural
systems in other ways. For example, an examination of those
systems that are particularly successful at certain kinds of
problems can lead to insights that can facilitate the simulation
of those solutions. This examination will not only facilitate our
ability to solve automated pattern recognition problems, but it
will also promote our understanding of the biological system
itself.



In this paper we report the results of some experiments
on the recognition of targets by an echolocating dolphin [15]
and the simulation of these results using a neural network.
The approach described in this paper is related to that taken by
Gorman and Sejnowski [6].

Dolphins have evolved unique sonar capabilities for
detecting, discriminating, and recognizing objects in noisy
environments. The bottlenosed dolphin (Tursiops truncatus) is
frequently found in shallow bays, inlets, swamps and
maushlands that are so murky or turbid that vision is severely
limited. As a result, there is strong evolutionary pressure
supporting the development of an adequate sonar capability in
these dolphins.

Many studies have demonstrated that dolphins can use
their biological sonar to discriminate between objects differing
in size, structure, shape, and matcrial composition ksee 112 for
a review). For example, dolphins can detect the presence of
small (7.6 cm stainless-steel) spheres at distances up to 113 m [3],
can discriminate between aluminum, copper, and brass circular
targets [5], and can discriminate between circles, squares, and
triangular targets covered with neoprene [4]. The dolphin
performs these tasks by transmitting broad-band high frequency
clicks and listening to the returning echoes. These clicks
emerge from the rounded dolphin forehead or melon as a highly
directid'nal sound beam with 3 dB (half power) beamwidths of
approximately 10* in both the vertical and horizontal planes.
Bottlenosed dolphins can hear frequencies as high as 150 khz [9]
and the clicks have peak energy at frequencies of 100-130 kHz
with source levels of up to 220 dB (re I uPa at I m), measure-!
in the same bay in which the present experiments were
conducted [I]. The time between successive clicks depends on
the distance of the animal from the target it is scanning. The
average time between successive clicks in a train is typically on
the order of 15 - 22 msec longer than the time required for the
click to travel through the water to the target and return as an
echo [2, 11, 13].

The dolphin in the present study (Tt598M) was trained to
perform three-alternative matching-to-sample (14, 151. The
stimulus set consisted of a large PVC tube open at both ends (25
cm long, 10 cm diameter, 30 mm wall thickness), a solid
aluminum cone (10 cm diameter base, 10 cm height), a small
PVC tube, also open at both ends (15 cm long, 7.5 cm diameter,
30 mm wall thickness), and a water-filled stainless steel ball (5
cm diameter). The stimuli differed in size, shape, material
composition, number of reflecting surfaces, and the distance
between reflecting surfaces. Four identical examples of each
item were used in the experiment. On every trial one of these
itcms was presented as the sample and three of the items,
including another example uf the sample itcm, w-,e pica.cntcd
as comparison stimuli.



The dolphin was *blindfolded* with soft latex vision
occluders (eye cups) that completely covered his eyes. The
cyccups were placed over the dolphin's eyes at the start of a
session and removed immediately following the session. The
eyecups could be removed voluntarily by the animal, but he
rarely did this during a session. The particular stimulus that
served as the sample on each trial and the location and identity
of the comparison stimuli were selected according to a
predetermined pseudorandom schedule.

The sample was presented directly in front of the
dolphin at a distance of approximately (5.31 m) by lowering one
of the stimuli into the water. The dolphin was allowed to
echolocate on the sample ad lib. The sample was then removed
from the water and an acoustic shutter was raised betw-en the
dolphin and the targets. Three alternative stimuli, one 220 to
the left, one 220 to the right and one directly in front of the
dolphin were presented. The comparison arrays were suspended
from a bar located 4.27 m from the observing aperture. The
three targets were drawn from the same pool of four items as
the sample. A different stimulus was presented in each
position, and one of the stimuli always matched (i.e., was
identical to) the sample that had appeared at the start of the
trial. The dolphin was again allowed to echolocate ad lib to the
three comparison stimuli. A correct choice (indicated by
touching a rubber response wand located in front of each
target) was rewarded by the presentation of approximately 3
Columbia River Smelt. Echolocation clicks were monitored by
interposing hydrophones between the dolphin and the target.
For additional details concerning the procedure and behavioral
results see [15].

The dolphin chose the correct matching alternative on
approximately 94.5% of the test trials. He achieved this level of
accuracy by emitting large numbers of echolocation clicks on
each trial. The number of clicks emitted in identifying the
sample stimulus depended on the identity of the stimuli. On
average, fewest clicks were emitted to the small tube (33.5) and
the large tube (35.9,. More clicks were emitted in identifying
the cone (39.5) and sphere (39.7). Roitblat et al. [151 argued that
the use of multiple clicks resulted from a sequential sampling
strategy, according to which the dolphin continued to sample
until sufficient information was obtained front the returning
echoes to reach a specified confidence criterion.

We examined the acoustic properties of the echoes from
these same stimuli. The echoes were obtained in a relatively
noise free test pool with an artificial broadband pulse similar to
a dolphin's echolocation click. The pulse had a 120-kHz center
frequency and a 3-dB bandwidth of about 39 kHz. Echoes were
digitized at a I mHz rate and subjected to an FFT. A set of ten
echoes were obtained from each of the four targets. Figure I
shows an example of the amplitude display and the respective
FFT for each item. The center portions of the FFTs (from 63
to 162 kHz) were then divided into 20 frequency bins. The
average amplitudes of the absolute values in these bins were
normalized to a range of approximately ±1.5 and used as the
inputs to a counterpropagation network [7, 8].
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Figure 1. Examples of the waveforms and resulting spectral
distribution for the obtects recorded in the test pool. The top panel
shows the echo for the Cone, the second panel for the Sphere, the
third panel for the Large Tube and the bottom panel for the Small
Tube.

The boion layer of the counterpropagation network
consisted of 20 input units corresponding to the 20 bins of FFT
information. The next layer consisted of 21 units. This layer



normalized the inputs so that all input vectors to the next layer
lay on a hypersphere with constant radius. The third layer
consisted of a so-called Kohonen layer. The units in this layer
have a transfer function that produces an output of 1.0 if the
unit is the one whose weight vector is closest to the normalized
input vector (the winner), and produces an output of 0.0
otherwise (each loser). The winning unit, that is the unit whose
weight vector most closely approximates the input vector and
whose output is 1.0 then adjusts its weights by some fraction of
the difference between each weight and the corresponding
normalized input. In essence it adjusts its weights to more
closely approximate (and hence select) the input that caused it
to win the competition with the other units in this layer. This
layer partitions the sets of inputs into regions on the surface of
the hypersphere which form a nearest neighbor classification
tesselation of the input vectors. The number of necessary
regions, and hence the number of units required in the Kohonen
layer, depends on the geometrical complexity of the input
feature space corresponding to the items in each category, the
similarity of the items in each category, the similarity of the
items in different categories, and their separability. The
Kohonen layer in our network consisted of 8 units.

The output of the Ko'honen layer leads to an output
layer, containing one unit f. each of the target categories. The
desired output of this layer is 1.0 for the unit representing the
input category, and 0.0 for the other units. The output layer
learns connections between its units and the units in the
Kohonen layer such that it maps the set of winners in the
Kohonen layer to the set of categories of the desired outputs.
During learning, the units in the output layer adjust their input
weights to minimize the difference between the output they
produce and the desired output. In other words, the output
layer learns to map the partitioned regions of the feature space
described by the units in the Kohonen layer into the desired
categories [7j.

The network was simulated using the NeuralWorks
program (NeuralWare, Inc., 1988). All of the echo returns
obtained in the test pool were used as training patterns for the
network, presented in the same order for a total of 5000
iterations. The network was then tested with the same patterns.

The dissimilarity distance among the various signals is
summarized in Table 1. This distance was computed according
to a Euclidean metric. The difference between corresponding
elements of the input pattern for each pair of patterns was
squared and summed. The distance or estimated dissimilarity is
then the square root of the sum of the squared differences. The
ratio of the average between-category distance to the average
within-category distance provides an estimate of the ease of
discrimination between the two category exemplars assuming an
equal weighting for all elements of the pattern. This ratio is
analogous to an F-ratio in analysis of variance in that it
compares the variability between categories to the variability
within the categories. These ratios are also shown in Table I.
The ratios were computed by comparing the average between-
category distance with the average of the two within-category
distances for the two categories. These ratios suggest that the
categorization of natural signals was a relatively easy task.

The network confirmed this estimation, this simple set of
targets was classified with 100% accuracy. This level of
accuracy indicates that the network could find discriminative
surfaces between each pair of stimuli that would classify the
stimulus into the correct category. The ease of this
classification is very likely due to the relatively ideal
conditions under which the echoes were collected. The click
source that generated the sounds that were returned in the
echoes had very little variability, the test pool was quiet (the
signal to noise ratio was greater than 50 dB) and had virtually
no current that would perturb either the position or orientation
of the target or the path of the returning echo (e.g., by moving
waler of different temperature at different rates between the



transponder and the target and thus changing the velocity of
the sound signal and its frequency structure).

Table I.

Relations among categories of artificial echoes

Average dissimila. ities

Cone Sphere LTube STube

Cone 0.08 1.57 1.66 3.79
Sphere 0.08 1.16 3.41
LTube 0.26 2.71
STube 0.09

Average dissimilarity ratios

Cone Sphere LTube STube

Cone 19.62 9.76 22.29
Sphere 6.82 40.82
LTube 15.49
STube

Note: Dissimilarities are given in arbitrary units. LTube= Large
PVC tube, STube = Small PVC tube. High dissimilarity ratios
indicate that this was a relatively easy discrimination because
the echoes were highly dissimilar.

During the next phase of the study we tested the
performance of the network on sets of echoes obtained under
more naturalistic conditions. The same dolphin that served in
the experiment by Roitblat, ct al. (151 was tested with three of
the original four stimuli described above (large tube, sphere,
and cone) in the same apparatus. Echoes were recorded with a
directional hydrophone (for better gain) placed adjacent to the
animal and digitized in the same manner as the echoes obtained
in the test pool. These data present an interesting problem with
which to test the network because unlike those obtained in a
nearly silent test pool, these echoes are obtained in a relatively
noisy environment and in a situation in which the dolphin, with
all its inherent biological variability, was actually performing
the matching-to-sample task. Hence, to the limits of the
equipment and the procedures, these echoes represent a selected
sample of the actual information the dolphin uses in making its
recognition decisions in a noisy environment. Echoes were
selected for digitization on the basis of the strength of the
specular return.

Echoes were recorded on a Racal (Store 4-DS) high-speed
(60 IPS) tape recorder and then played back and digitized on a
Data Precision Data 6000 digital analyzer at I mHz. Ten echoes
with high signal to noise ratios from each stimulus were
digitized and subjected to the same FFT algorithm used on the
echoes from the test pool, except that the frequency range was
changed to include frequencies between 40 and 138 kHz.
Examples of the waveform and FFT of these echoes are shown
in Figure 2. The stimulus patterns that resulted from this
process are shown in Figure 3. The same network architecture
that was used to classify the test-pool echoes was reset and
trained for 5000 iterations to recognize the natural echoes. The
natural echoes were also recognized with considerable success.
When all thirty echoes were used as the training and the recall
set, then the network correctly classified 29 of these echoes
(96.7%) into the correct category. Figure 4 shows the pattern of
connection weights that carried information from the
normalized input vector to the classifying Kohonen layer of the
network. These vectors are the network's learned
approximations to the centroids of the eight classes of input
vectors.
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Figure 3. The input patterns for each of the three objects with
echoes collected during the dolphin's performance. The top panel
shows the input pattern resulting from the FFT for the Sphere. the
second panel shows the input pattern for the Cone. an4 the third
panel shows the input pattern for the Large Tube.

Table 2 shows the Euclidean distances and the between-
versus within-category distance ratios for these natural echoes.
As this table shows, the natural echoes were not nearly as
discriminable as the echoes collected in the test pool, yet the
network was still quite successful at properly classifying the
echoes in the test set.

Table 2.

Relations among categories of natural echoes

Average dissimilarities

Sphere Cone LTube

Sphere 1.24 1.86 2.54
Cone 0.84 2.39
LTube 0.84

Average dissimilarity ratios

Sphece Cone LTube

Sphere 1.79 2.44
Cone 2.85
LTube

Note: Dissimilarities are given in arbitrary units. LTube, Large
PVC tube.
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Discussion

This paper demonstrates the success of a neural network
at recognizing at least some kinds of sonar targets. These

targets were selected for use with dolphin because they were
readily discriminable. Similar success was noted by Gorman

and Sejnowski (6), discriminating between a rock and a metallic

cylinder. Their discrimination task was also relatively simple
in that only two different targets were used and data were

collected under relatively ideal conditions. Nevertheless, the

use of neural networks to perform this kind of pattern
recognition seems quite promising.

There arc five major differences between the present

study and that by Gorman and Scjnowski. First, our study
employed targets that were concurrently being recognized by a

live dolphin in its scminaturalistic environment. We could

compare the performance of our network with the performance

of the actual dolphin. Second, our study required the dolphin
and the network to recognize three or four different targets
rather than just two targets. Third, our study employed a

counterpropagation network, rather than a bac!:propagation

network. Fourth, our study differed in the means by which we
represented the pattern of the returning echo. Fifth, we used

20 bands of frequency information in performing the

identification whereas Gorman and Scjnowski used 60 bins.

Gorman and Sejnowski employed a moving sampling

aperture imposed over a two-dimensional short-term Fourier

transform spectrogram of the echo. These apertures were then

integrated to produce a siormalized spectral envelope. In

contrast, we used a simple frequency representation of the
returning echo, using only a single sampling aperture to obtain



a single spectrum for the entire echo. Other representational
schemes are also available to represent the returning echo, and
it is an interesting experimental question to determine the kind
of representational scheme that most closely approximates that
used by a dolphin.

Our targets differed from one another along a large
number of physical dimensions, including size, material, and
shape. They also differed along a number of spectral
dimensions. The present experiments indicate that the
distribution of energy across the high-frequency domain
provides enough information for successful recognition of at
least the simple kinds of stimuli we have examined. Another
interesting experimental question is to determine whether this
kind of spectral analysis is sufficient for all the kinds of echoic
categorization dn!phins can perform or whether other features
of the returning signal must also be explicitly represented.

Finally, the results of the present study su .gest
interesting lines of investigation involving the comparison of
different network architectures for the performance of
different kinds of classification tasks. Gorman & Sejnowksi [6]
employed a backpropagation network with 60 input bins to
perform a binary classification (rock versus metal cylinder) and
varied the number of hidden elements in the network. We on
the other hand, used only 20 frequency bands as inputs to a
counterpropagation network, but we were able to recognize as
many as four different objects. Further comparisons of these
two architectures as a function of the number of inputs would
be useful.

m m m m ) r --. ......... ... . . . . . . .
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